©2021, Northrop Grumman

Project X DDR4-2400 Signal Integrity Analysis

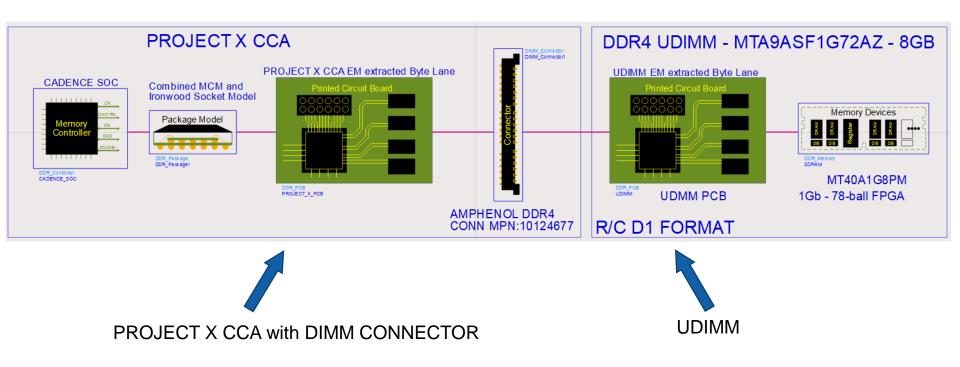
Staff Digital Engineer

April 8, 2021

NORTHROP

Outline

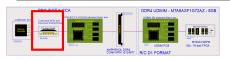
- Design Assumptions
- System Models
- Single Byte Lane DQ[7:0] Channel Analysis
- Single Byte Lane DQ[7:0] Write Results
- 2 Byte Lane DQ[15:0] + DM[1:0] + DQS1 + DQS0 Read/Write Results
- 4 Byte Lane DQ[31:0] + DM[3:0] + DQS[3:0] + CLK0 Write Results
- A[7:0] Write Results with UDIMM
- A[7:0] Write Results with RDIMM
- Follow Up Questions


NORTHRO

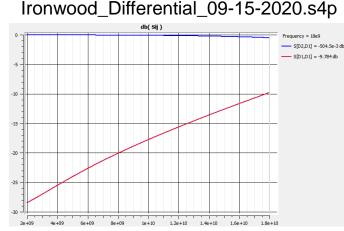
Design Assumptions

- Simulation Temp: Room Temp (25°C)
- Not Power Aware SI Power Integrity is not included in any of these models
- No DFE or EQ enabled
- Simulation Setup
- Unless otherwise stated, all Models will include 2% RANDOM JITTER (RJ) => 0.02 UI
 - At the memory controller for WRITE cycle RJ = 8.333 ps for DQ, 4.17 ps for all other nets
 - At the SDRAM for READ cycle RJ = 8.333 ps for DQ, 4.17 ps for all other nets
- All Simulations shown were done in ADS using Memory Designer
- Using ADS Memory Designer Statistic based simulation and bit-by-bit simulations
 - Unless otherwise stated
- IBIS Corner setting = MAX
 - Unless stated otherwise models shown are for MAX IBIS corner type
- Unless otherwise stated, all EM extractions for Project X CCA, UDIMM CCA, and MCM model were done using SIPro
- Simulation models as shown include crosstalk as part of simulation as per MCM, Project X CCA, UDIMM CCA EM extraction configurations. Any included crosstalk is limited per connector and socket models.

Project X CCA to UDIMM Model

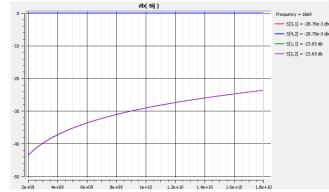


System Models - IBIS Models - CADENCE ASIC


CADENCE MCM (ASIC) MPN: 828RA72	
IBIS file created by T2B Version 17.2.9.04121.123020 009 Cadence Design Systems, Inc. 2011	
[IBIS ver] 5.1 [File name] gf_12lp_ddr4.ibs [File Rev] 1.0 [Date] December 4, 2019	Original Model had to be edited to include multiple additional pins for simulation

[IBIS ver] 5.1 [File name] gf_12lp_ddr4_edited_1v2.ibs [File Rev] 1.2 [Date] January 25, 2021	Model used for simulation

System Models – Socket Model

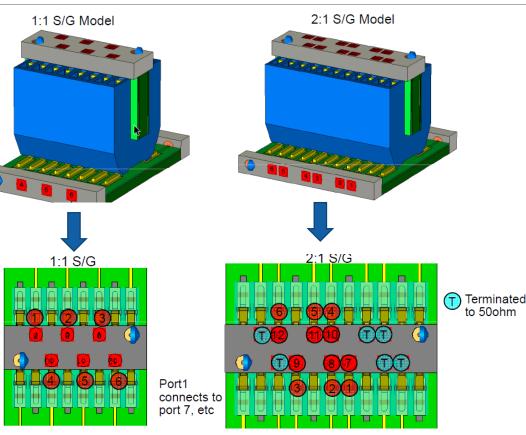

6

NORTHROP GRUMMAN

Ironwood_Socket_SGS_07-09-2020.s4p

• 3 Ironwood Socket Models were used in combination with the respective MCM model for the Package Model

=>MCM model + Socket model = Package Model *This is shown later


System Models - DDR4 288-pin DIMM Connector Model

AMPHENOL MPN: 10124677

Model Name: SPa_DDR4_SMT_10124677_v4

DIMM Connector Model extracted from: SPa_DDR4_SMT_10124677_v4.zip

2 DIMM connector Models were used in combination to form a complete DIMM connector model

ATR

ETCH_TOP

ETCH_P_2

ETCH_S_3

ETCH_S_5

ETCH_S

ETCH_P_9

ETCH BOTTOM

POLYIMIDE (3.4)

FR-4 (4.2)

FR-4 (4.2)

0.08 millimeter

FR-4 (4.2) 0.08 millimeter

FR-4 (4.2)

FR-4 (4.2) 0.1 millimeter

ATR

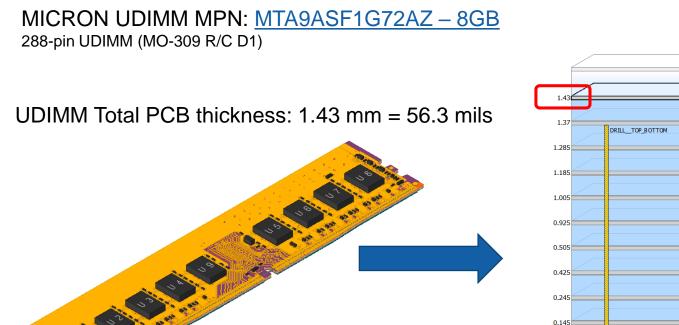
0.1 millimeter FR-4 1 (4.5)

(0.015+0.045) millime...

FR-4 (4.2) (0.07+0.015) millimeter

(0.15+0.03) millimeter

(0.39+0.03) millimeter


(0.15+0.03) millimeter

FR-4 (4.2) (0.07+0.015) millimeter

POLYIMIDE (3.4) (0.015+0.045) millime...

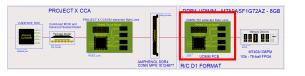
DDR4 UDIMM - MTA9ASF1G72A7 - 8G

System Models - UDIMM R/C D1 Model & PCB Stack-Up

SIPro Imported model

JEDEC UDIMM R/C D1 (imported DIMM)

10L Stack-up


0.06

0 millimete

8

System Models - UDIMM R/C D1 Model & PCB Stack-Up

JEDEC Standard No. 21C Page 4.20.26-27

6.7 Reference Stackups

This section defines the preferred stackup for 6, 8, and 10 layer UDIMMs. Stackup for specific cards may be different from the preferred stackups in the tables below.

Table 15 — Preferred 10 Layer Stackup for UDIMMs

ayers				
	Solder Mask	15 µm		
1	Cu	45 µm	Signal	3/8 oz + Plating
	Prepreg	70 µm		
2	Cu	15 µm	VDD/VSS	1/2 oz
	Core	100 µm	•	
3	Cu	15 µm	Signal	1/2 oz
	Prepreg	150 µm		
4	Cu	15 µm	VDD/VSS	1/2 oz
	Core	80 µm	-	
5	Cu	15 µm	Signal	1/2 oz
	Prepreg	390 µm		
6	Cu	15 µm	Signal	1/2 oz
	Core	80 µm		
7	Cu	15 µm	VDD/VSS	1/2 oz
	Prepreg	150 µm		
8	Cu	15 µm	Signal	1/2 oz
	Core	100 µm		
9	Cu	15 µm	VDD/VSS	1/2 oz
	Prepreg	70 µm	-	
10	Cu	45 µm	Signal	3/8 oz + Plating
	Solder Mask	15 µm		

Total Thickness: 1400 ± 100 µm as measured across connector contact fingers (without solder mask)

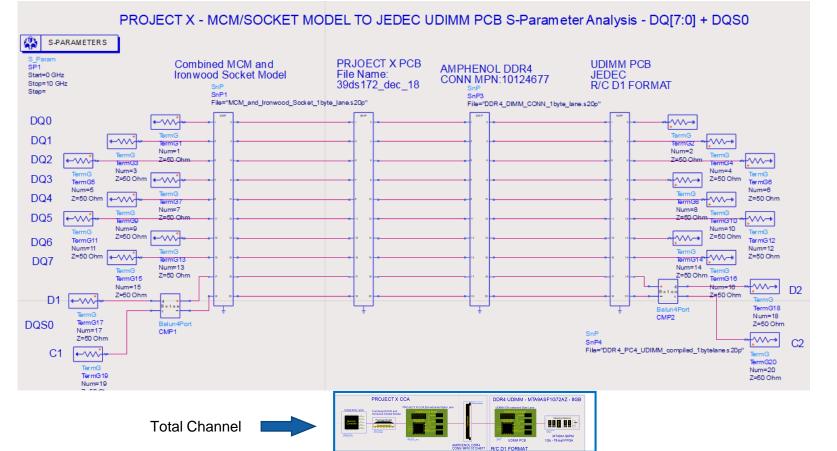
UDIMM Total Model thickness

 $= 1.43 \text{ mm} - \text{Solder mask} (0.015^{*}2) = 1.4 \text{ mm}$

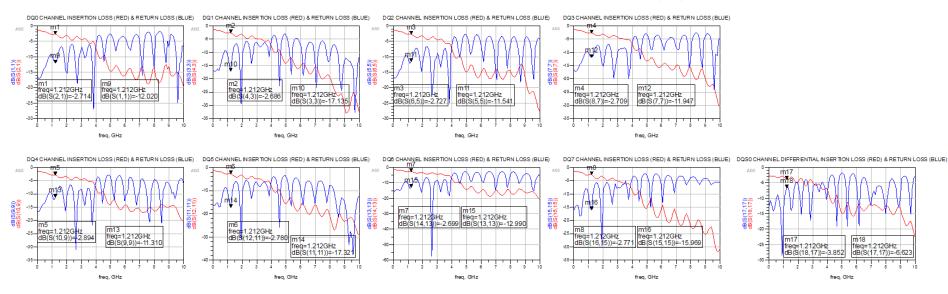
=> Meets <u>JEDEC DDR4 SDRAM UDIMM Design</u> <u>Specification (Rev. 1.10 Aug 2015) for 10L stack-up:</u> 1400 um +/- 100 um

System Models - IBIS Models – UDIMM MICRON SDRAM

MICRON SDRAM MPN: MT40A1G8


z91b.ibs * IBIS 4.2 Model 8Gb DDR4 SDRAM - Die Revision "A" This Model is valid for Commercial Temperature Range 0C<=Tc<=95C 	
Valid for DDR4-1600/1866/2133/2400/2666 operation Models *_2666 are applicable for speed grade 2666 Mbps (-075) and below	
Part Number VDD/VDDQ Architecture Package	
, MT40A2G4PM 1.2V/1.2V 2Gb x.4 78-Ball FBGA	
MT40A1G8PM 1.2V/1.2V 1Gb x 8 78-Ball FBGA MT40A512M16HA 1.2V/1.2V 512Mb x 16 96-Ball FBGA MT40A2G4Z91B 1.2V/1.2V 2Gb x 4 Bare Die MT40A1G8Z91B 1.2V/1.2V 1Gb x 8 Bare Die MT40A512M16Z91B 1.2V/1.2V 1Gb x 8 Bare Die IMT40A512M16Z91B 1.2V/1.2V 512Mb x 16 Bare Die [IBIS Ver] 4.2	Model used for simulation
 [File Name] z91b.ibs [Date] 09/22/2014 [File Rev] 1.0 [Source] From silicon level SPICE model at Micron Technology, Inc. For support e-mail modelsupport@micron.com 	PROJECT X CCA Province Toxic and the set of

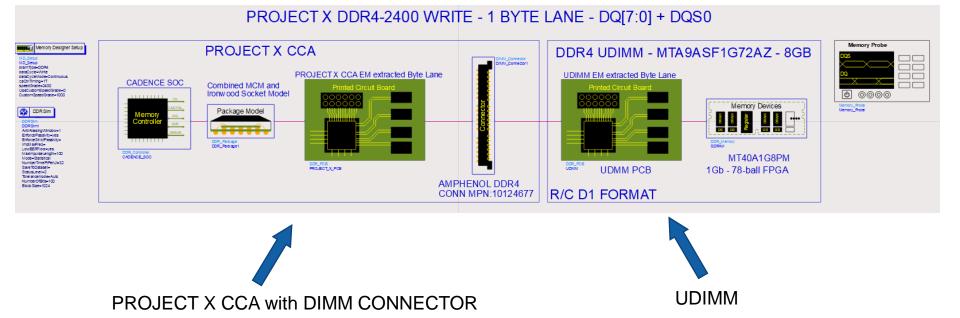
DDR4-2400 DQ AND DQS ANALYSIS 1 Byte Lane (Write Only)



Total Channel S-Parameter Simulation Model – 1 byte Lane - DQ[7:0] + DQS0

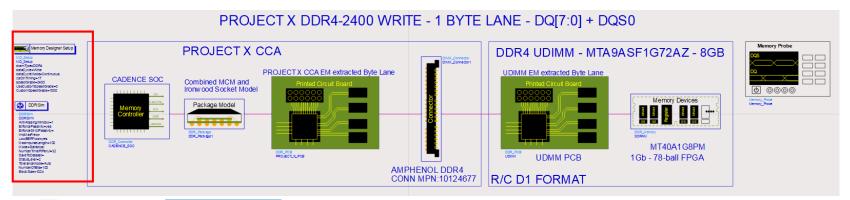
Total Channel S-parameter – 1 byte Lane - DQ[7:0] + DQS0 – Insertion Loss & Return Loss - Results

TOTAL CHANNEL - PROJECT X MCM to UDIMM INSERTION LOSS (RED) and RETURN LOSS (BLUE) - DQ[0:7] + DQS0

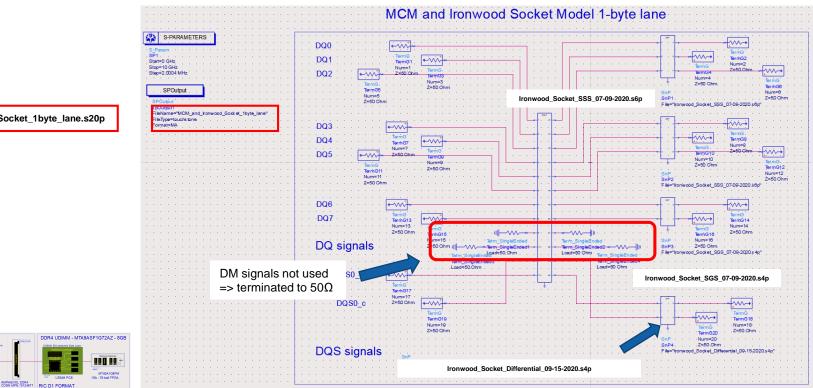


*DQ <u>total</u> channel insertion loss = ~ (<u>-2.7 dB</u>) @ 1.2GHz *Worst case insertion loss for DQ4 @ (-2.89 dB) @ 1.2GHz *DQ <u>total</u> channel return loss = ~(<u>-11.5 dB</u>) @ 1.2GHz *Worst case return loss for DQ4 @ (-11.3 dB) @ 1.2GHz

*DQS0 <u>total</u> channel insertion loss = ~ (<u>-3.8 dB</u>) @ 1.2GHz *DQS0 <u>total</u> channel return loss = ~ (<u>-6.6 dB</u>) @ 1.2GHz

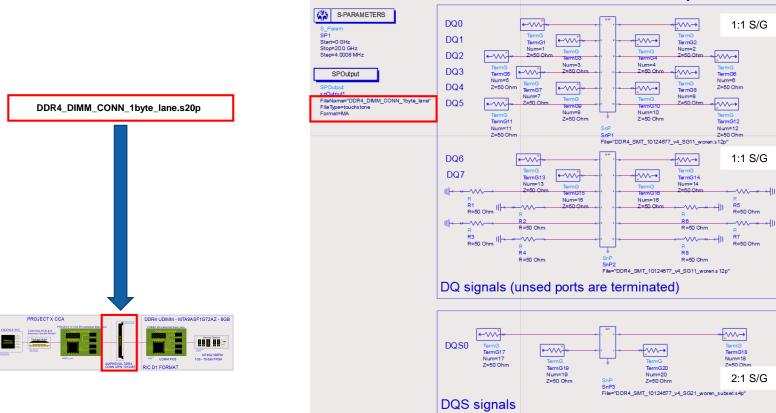


Simulation Model – DDR4-2400 Write – 1 byte Lane – DQ[7:0] + DQS0

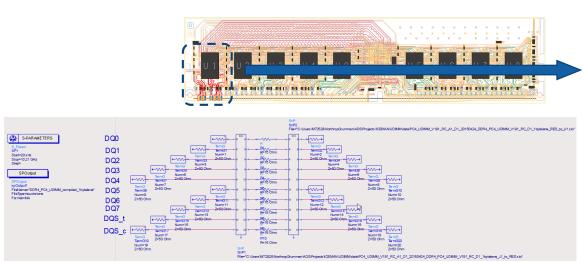

Simulation Model – DDR4-2400 Write – with SIPro EM EXTRACTED MCM Model

Memory Designer Setup
MD_Setup
MD_Setup
dramType=DDR4
dataCycle=Write
· dataCycleMode=Continuous· · · ·
.caCtrlTiming=1T
speedGrade=2400
UseCustomSpeedGrade=0
Custom SpeedGrade=1000
DDR Sim 1 1 1 1 1 1
DDRSim
DDRSim1
AntiAliasingWindow=1
EnforcePassivity=yes
EnforceStrictPassivity=
ImpMaxFreq=
LowBERFloor=yes
MaxImpulseLength=100
Mode=Statistical
NumberTimePtPerUI=32
SaveToDataset=
StatusLevel=2
ToleranceMode=Auto
NumberOfBits=100
BlockSize=1024

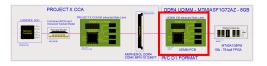
DDR4 MCM + Socket Model – 1 byte lane


MCM and Ironwood Socket 1byte lane.s20p

DDR4 Connector Model for 1-byte lane



DDR4 DIMM Connector Model – 1 byte lane

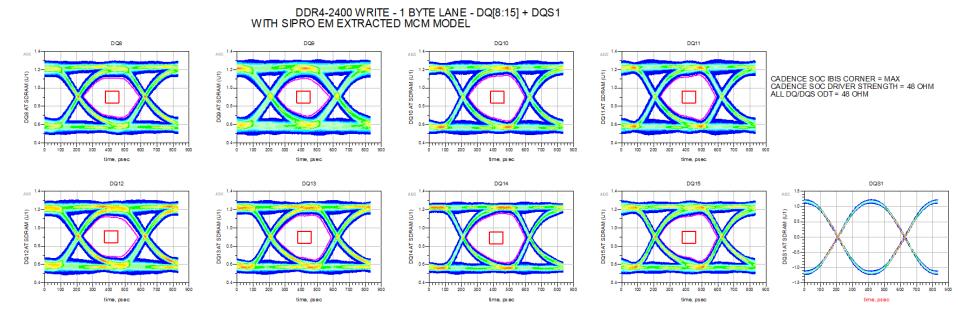


UDIMM EM Extracted Model – 1 byte lane – DQ[7:0] + DQS0

ADS 2020 – prevented complete EM extraction model with in-line component – this is resolved in ADS 2021. => This model consist is two compiled models.

EM Extraction based on UDIMM Layout Data: PC4-UDIMM_V191_RC_A1_D1_20150424.zip

DDR4-2400 Write – DQ[7:0] + DQS0 – Results – No Random Jitter Added



Probe Point

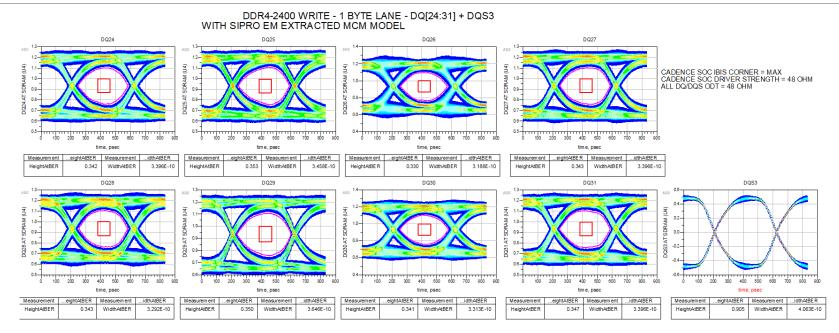
*DQ eye mask shown is for JEDEC DDR4-2400 to achieve BER 1E-16. *Results shown are for ODT = 48Ω on all DQ signals.

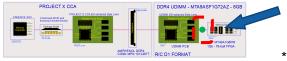
All signals pass Eye mask compliance for DDR4-2400

DDR4-2400 Write – DQ[15:8] + DQS1 – Results – No Random Jitter Added

Probe Point

DDR4 UDIMM - MTA9ASE1G72AZ - 8GB


UDMM PCF


AMPHENOL DDR4 CONN MPN: 10124877 R/C D1 FORMAT *DQ eye mask shown is for JEDEC DDR4-2400 to achieve BER 1E-16. EM Extraction based on PROJECT X Layout Data: projectx_39ds172_dec-18.tgz

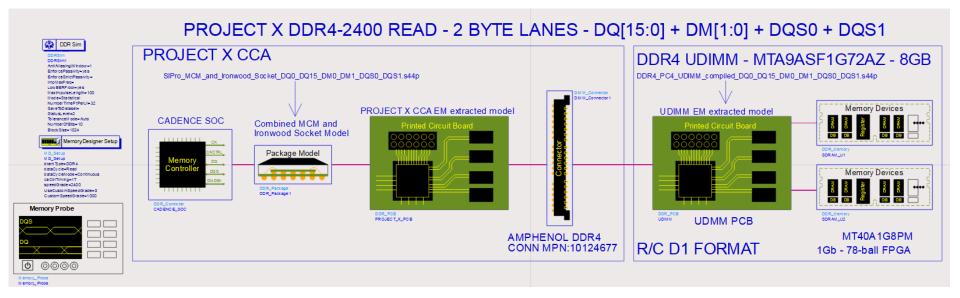
All signals pass Eye mask compliance for DDR4-2400

PROJECT X CCA

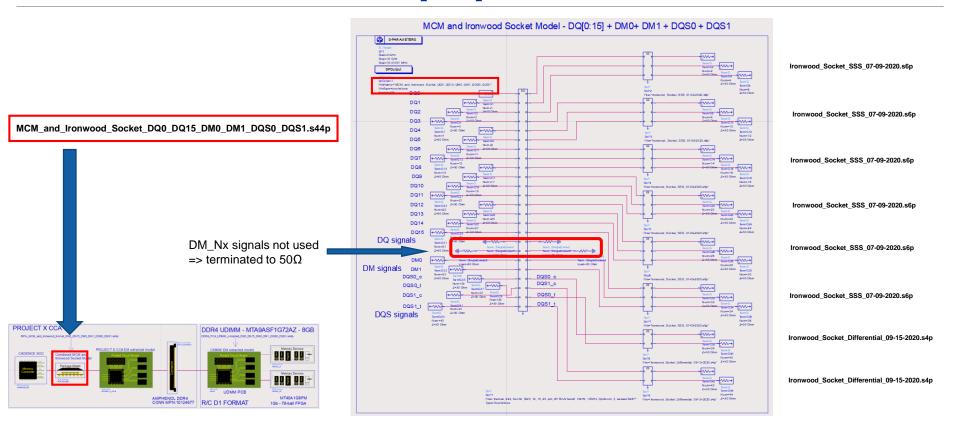
DDR4-2400 Write – DQ[31:24] + DQS3 – Results – No Random Jitter Added

Probe Point

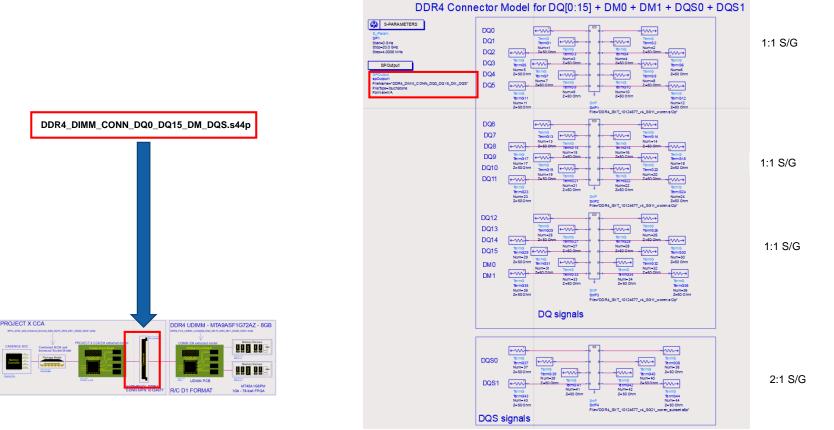
EM Extraction based on PROJECT X Layout Data: projectx_39ds172_dec-18.tgz *DQ eye mask shown is for JEDEC DDR4-2400 to achieve BER 1E-16.


All signals pass Eye mask compliance for DDR4-2400

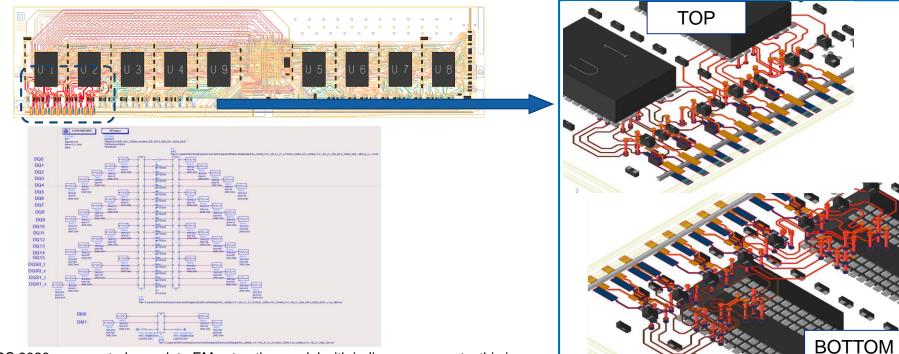
DDR4-2400 DQ[15:0] + DM[1:0] + DQS0 + DQS1 READ AND WRITE ANALYSIS



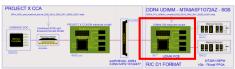
Simulation Model – DDR4-2400 Write/Read – DQ[15:0] + DM[1:0] + DQS0 + DQS1



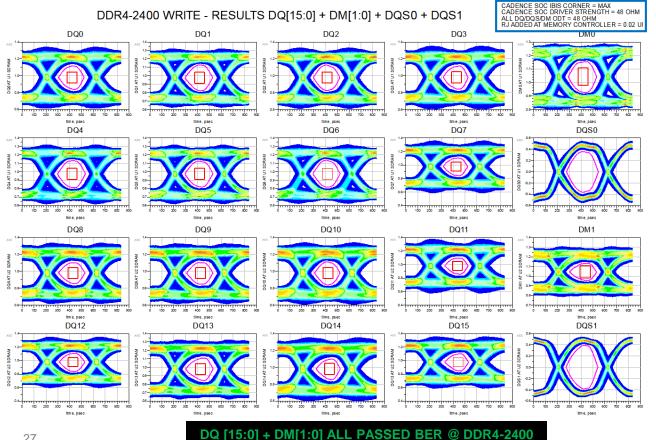
DDR4 MCM + Socket Model – DQ[15:0]+DM0+DM1+DQS0+DQS1



DDR4 DIMM Connector Model – DQ[15:0] + DM[1:0] + DQS0 + DQS1

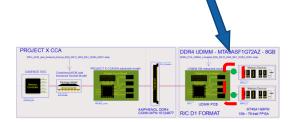


UDIMM EM Extracted Model – DQ[15:0]+DM0+DM1+DQS0+DQS1

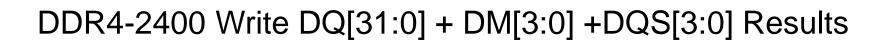


ADS 2020 – prevented complete EM extraction model with in-line component – this is resolved in ADS 2021. => This model consist is two compiled models.

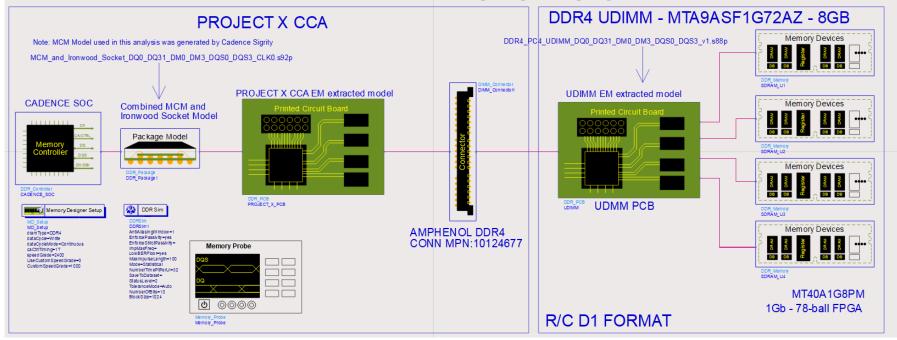
EM Extraction based on UDIMM Layout Data: PC4-UDIMM_V191_RC_A1_D1_20150424.zip


DDR4-2400 Write – 2 byte lane Results – DQ[15:0] + DM[1:0] + DQS0 + DQS1


Sim settings

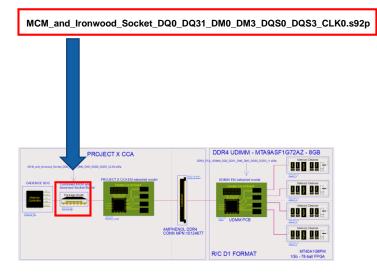

*Includes 2% Random Jitter injected at Memory Controller

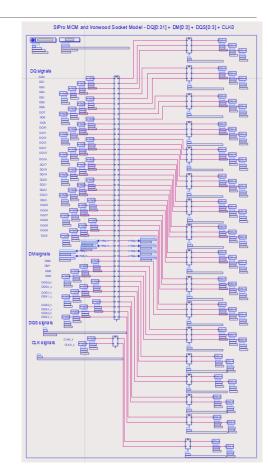
DDR4-2400 Read – 2 byte lane Results – DQ[15:0] + DM[1:0] + DQS0 + DQS1



Simulation Model – DDR4-2400 Write – DQ[31:0] + DM[3:0] + DQS[3:0]

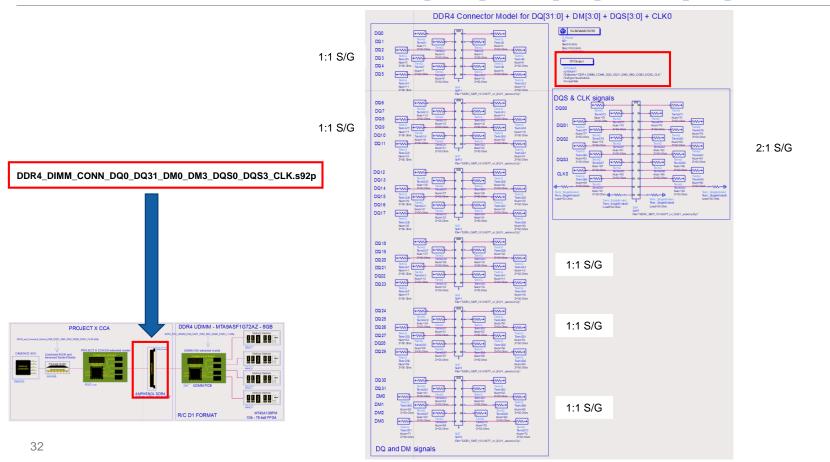
PROJECT X DDR4-2400 WRITE - 4 BYTE LANES - DQ[31:0] + DM[3:0] + DQS3 + DQS2 + DQS1 + DQS0



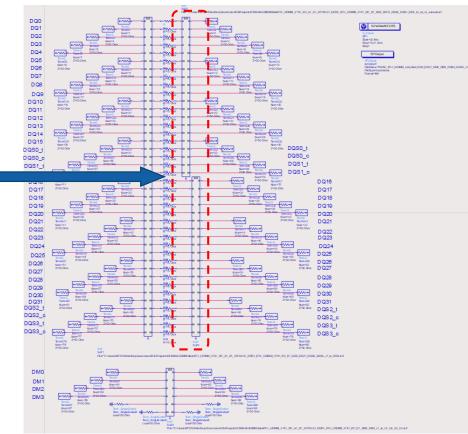


DDR4 MCM + Socket Model – 4 byte lanes

Due to memory limitation on local machine in SIPro, a single 4 byte lane MCM model was not able to be extracted.

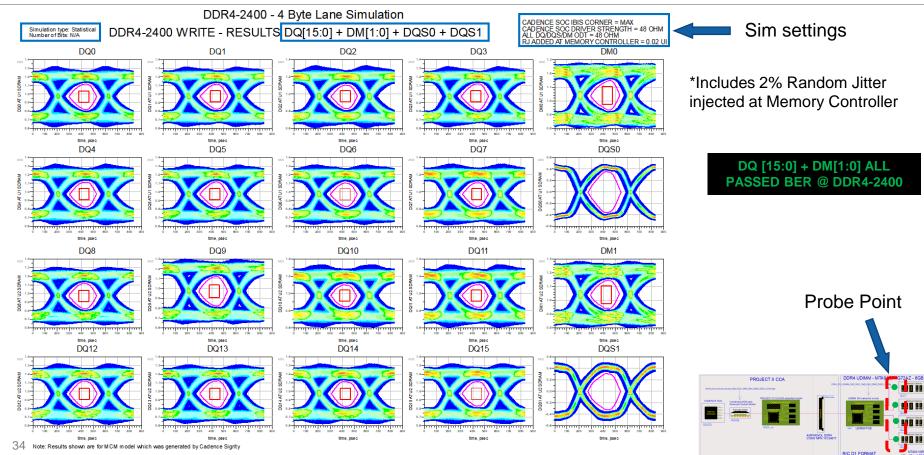

=> Cadence Sigrity MCM extracted model was used for MCM in the combined MCM + Socket model

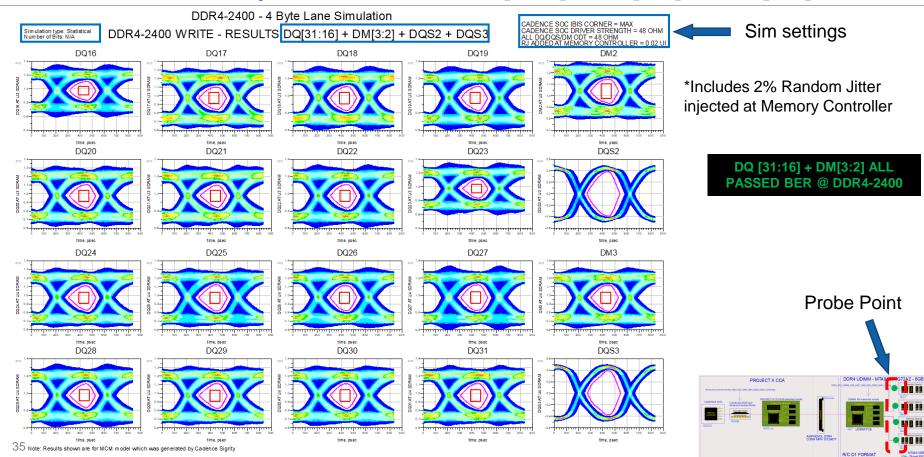
DDR4 DIMM Connector Model – DQ[31:0] + DM[3:0] + DQS[3:0]


UDIMM EM Extracted Model – DQ[31:0] + DM[3:0] + DQS[3:0]

EM Extraction based on UDIMM Layout Data: PC4-UDIMM_V191_RC_A1_D1_20150424.zip

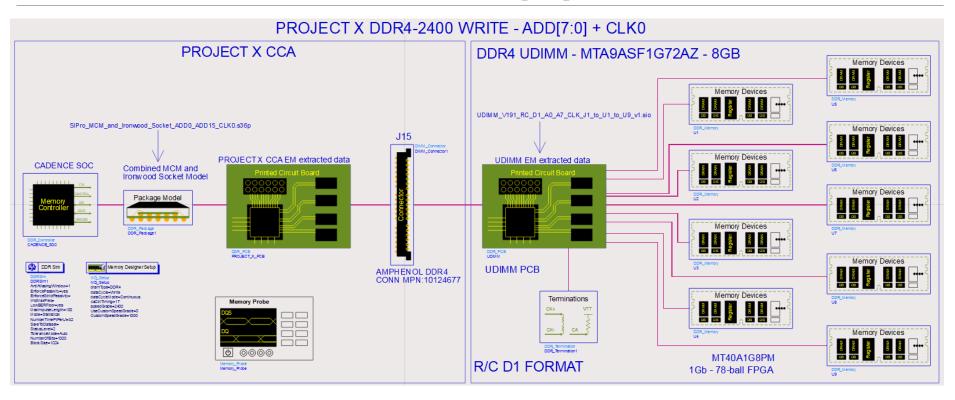
In SIPro, EM extraction would output incorrect results for random DQ nets. The solution was to break up the extraction from 4 byte lanes into 2 byte lanes. This could have been a convergence issue in SIPro with ADS 2020U1.


*ADS 2020 – prevented complete EM extraction model with in-line component – this is resolved in ADS 2021. => This model consist is two compiled models.



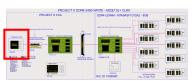
DDR4-2400 Write – 4 byte lane Results – DQ[31:0] + DM[3:0] + DQS[3:0]

DDR4-2400 Write – 4 byte lane Results – DQ[31:0] + DM[3:0] + DQS[3:0]



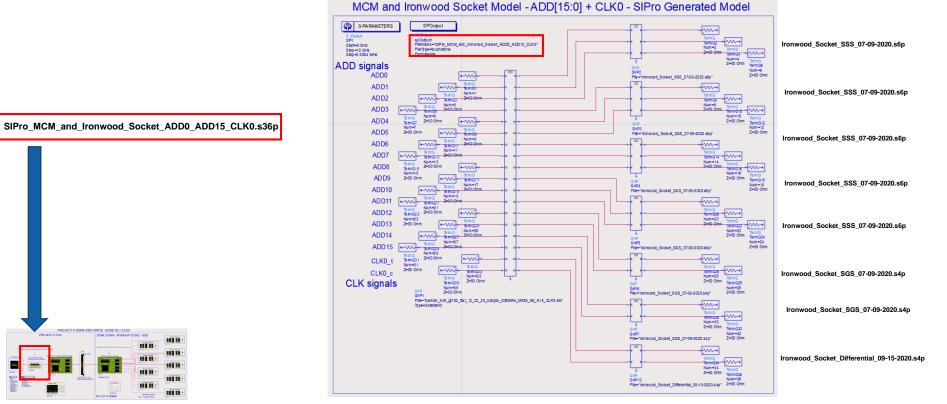
DDR4-2400 Write ADD[7:0] + CLK0 Results with UDIMM (R/C D1)

Simulation Model – DDR4-2400 Write – ADD[7:0] + CLK0

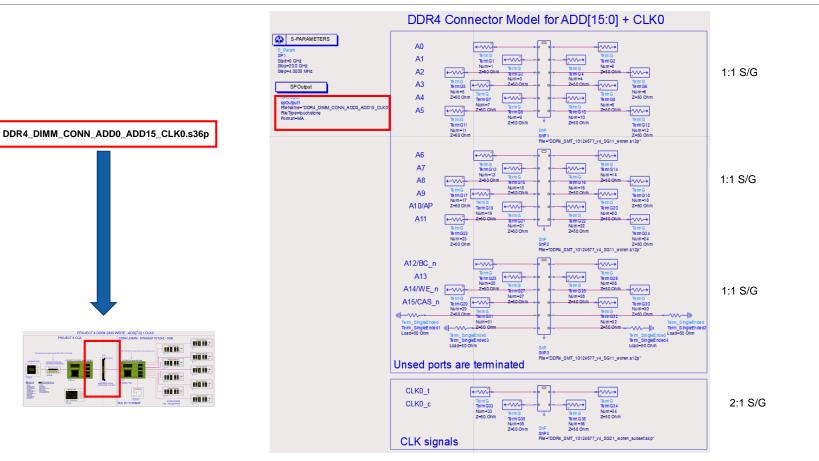


DDR4 Memory Controller Package Delay Settings - ADD[7:0] + CLK0

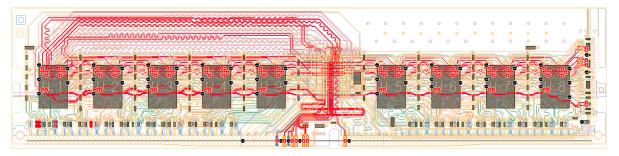
Select IBIS/ EBD File C:/Users/M72528/NorthropGrumman/ADS/Projects/DDR4_wrk/data/gf_12lp_ddr4_EDITED_1v2.ibs	Browse	View
Component DDR4		
Assign signal property by: IBIS Signal Name 🔻 🗌 Enable Channel ID Matching 🛛 Collapse Power Node		
Use Delay File	Browse	View
Enable DBI 🔿 DBIdc 🕥 DBIac 🔘 None		


Assign Signal Property and Enable Pins for Simulation

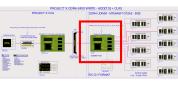
Re	eference Designator and IBI	IS Table			Signal Property Table			
Search	Search	Search	Search	Search	Y	Search	Search	
Ref Des	IBIS Pin Name	IBIS Signal Name	Signal Type	Signal Index	Simulate	Delay (sec)	Channel ID	^
U8_ADS_DIE	48	ADD0	А	0	Υ	115e-12	0	
U8_ADS_DIE	49	ADD1	А	1	γ	96e-12	0	
U8_ADS_DIE	50	ADD2	А	2	γ	105.6e-12	0	
U8_ADS_DIE	51	ADD3	А	3	γ	100.7e-12	0	
U8_ADS_DIE	52	ADD4	А	4	γ	111.6e-12	0	
U8_ADS_DIE	53	ADD5	А	5	γ	118.8e-12	0	
U8_ADS_DIE	54	ADD6	А	6	γ	122.6e-12	0	
U8_ADS_DIE	55	ADD7	А	7	γ	124.4e-12	0	
U8_ADS_DIE	65	CLKN0	CK_c	0	γ	99.6e-12	0	
U8_ADS_DIE	64	CLKP0	CK_t	0	Υ	98.9e-12	0	
								~

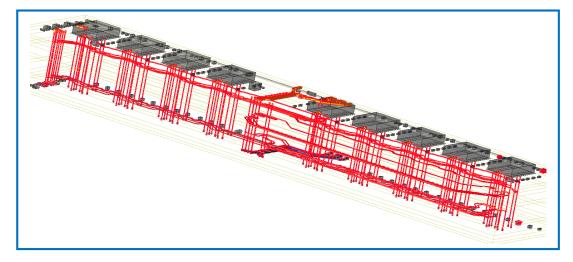

DDR4 MCM + Socket Model – ADD[15:0] + CLK0

MCM Model: projectX_MCM_A0_A15_CLK0.sio



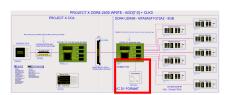
DDR4 DIMM Connector Model – ADD[15:0] + CLK0


UDIMM EM Extracted Model – ADD[7:0] + CLK0



**Important Note: All CAC nets & CLK0 had return port set to VDD on UDIMM.

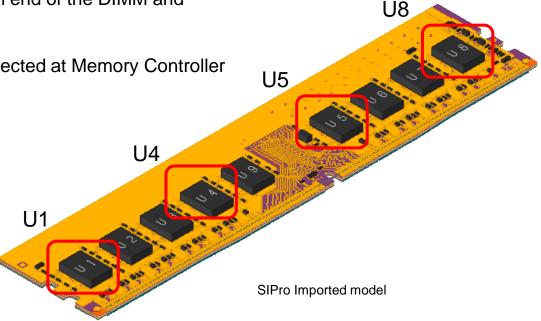
DDR4 Command Address Signals Reference VDD not GND!



EM Extraction based on UDIMM Layout Data: PC4-UDIMM_V191_RC_A1_D1_20150424.zip

DDR4 ADD & CLK Termination Settings – ADD[7:0] + CLK0

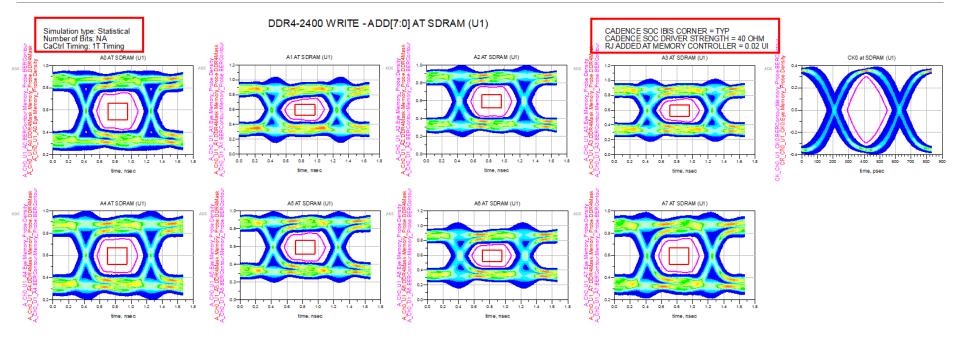
Termination for CA and	Control Signals					
VTT (Volts) 0.6		R_CA (Ohms) 39.0		Rs_Control (Ohms) 39.0		_
Termination for Clock Sig	gnals					
O Termination Topolog						
R_CK_diff (Ohms)						
C Termination Topolog R_CK_SE (Ohms) 5			VTT_CK (Volts) 1.0			
Termination Topolog			VII_CR (Volts) 1.0			
R_CK_SE (Ohms)		C_CK (pFs) 10		VTT_CK (Volts) 0.6		_
Search	Search	Search	Search	Search	k	_
Port Name	RefDes	Signal Type	Signal Index	Channel ID	Simulate	
CLK0_B_RN47	RN47	CK_c	0	0	Y	_
CLK0_RN47	RN47	CK_t	0	0	Y	
A7_RN51	RN51	А	7	0	Y	
A6_RN49	RN49	А	6	0	Y	
A5_RN53	RN53	А	5	0	Y	
A4_RN53	RN53	Α	4	0	Y	
A3_RN53	RN53	A	3	0	Y	
A2_RN51	RN51	А	2	0	Y	
A1_RN49	RN49	A	1	0	Y	
A0_RN49	RN49	A	0	0	Y	

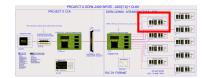




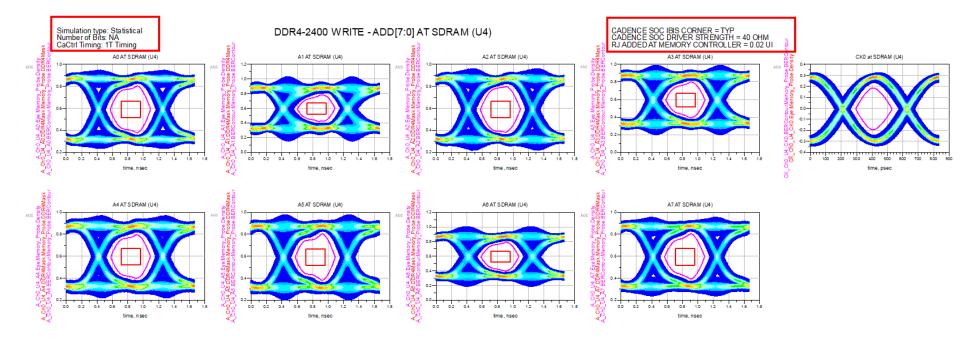
ADDRESS Signal SI Analysis on UDIMM

MICRON UDIMM MPN: MTA9ASF1G72AZ – 8GB 288-pin UDIMM (MO-309 R/C D1)

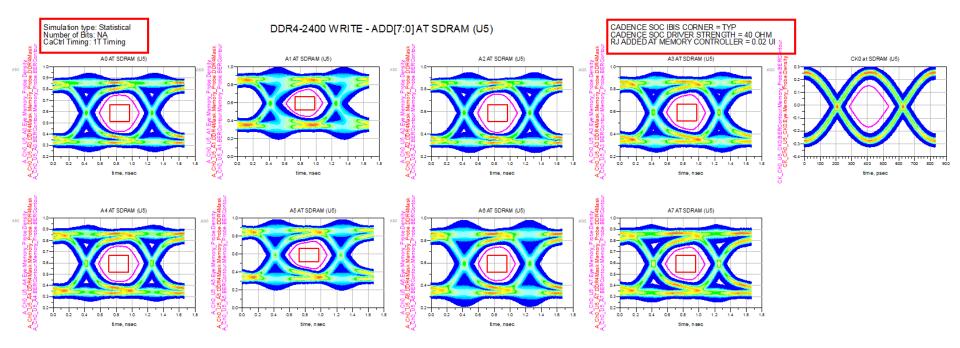

- Analysis shown will only include analysis at the following SDRAMs at the UDIMM for A[7:0] + CLK0 due to fly-by topology on UDIMM for CAC nets
 - This allows analysis to be done at each end of the DIMM and middle points on DIMM
- Results shown include 2% Random Jitter injected at Memory Controller with BER = 1E-16



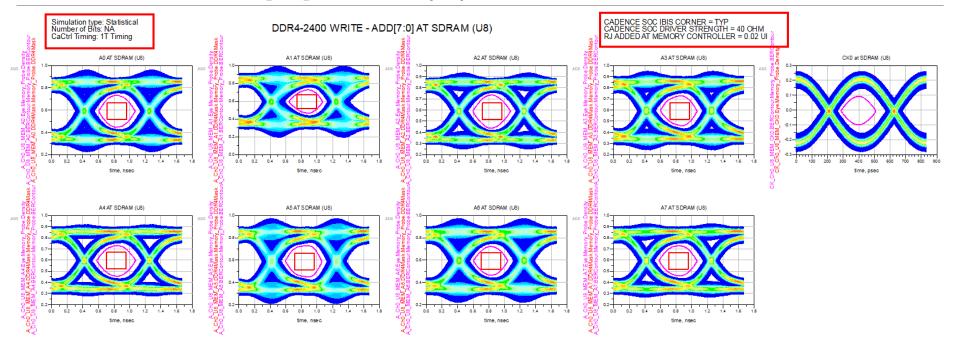
Results DDR4-2400 ADD[7:0] at SDRAM (U1) on UDIMM – TYP IBIS Corner



44

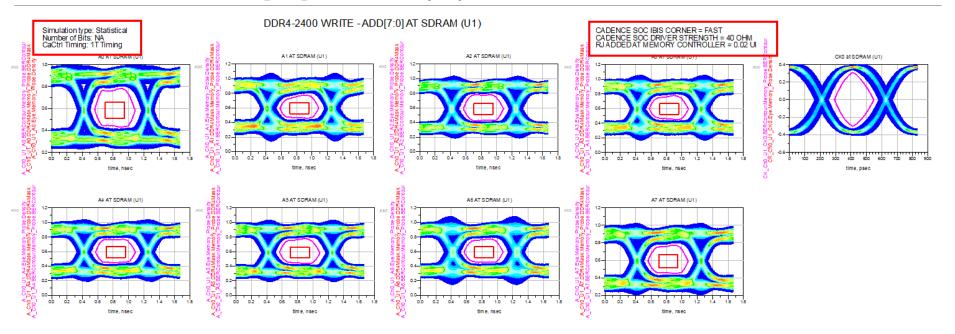

Results DDR4-2400 ADD[7:0] at SDRAM (U4) on UDIMM – TYP IBIS Corner

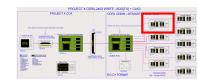
Results DDR4-2400 ADD[7:0] at SDRAM (U5) on UDIMM – TYP IBIS Corner



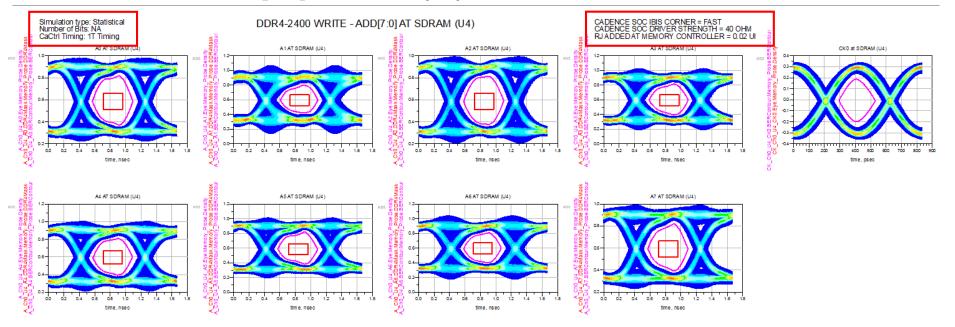
46

Results DDR4-2400 ADD[7:0] at SDRAM (U8) on UDIMM – TYP IBIS Corner

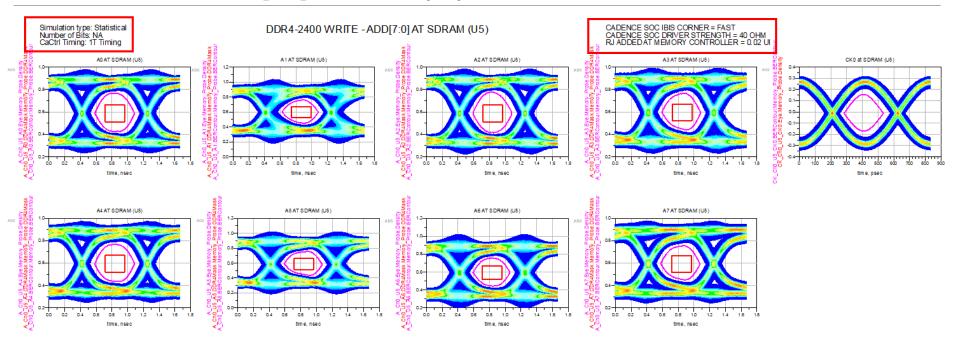


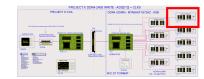


47

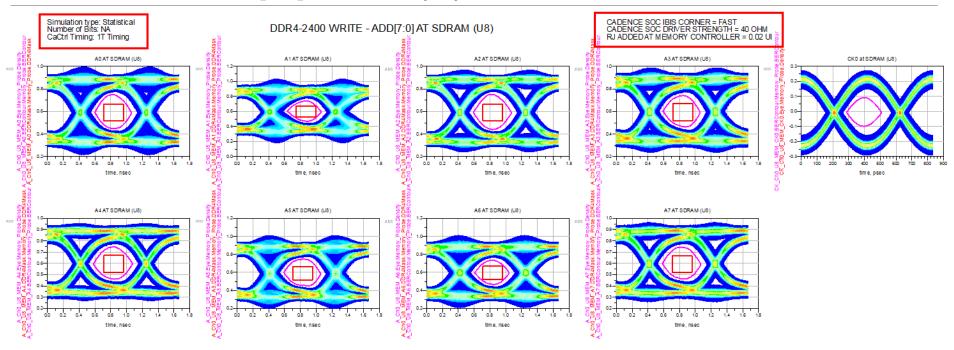

Results DDR4-2400 ADD[7:0] at SDRAM (U1) on UDIMM – FAST IBIS Corner

Results DDR4-2400 ADD[7:0] at SDRAM (U4) on UDIMM – FAST IBIS Corner

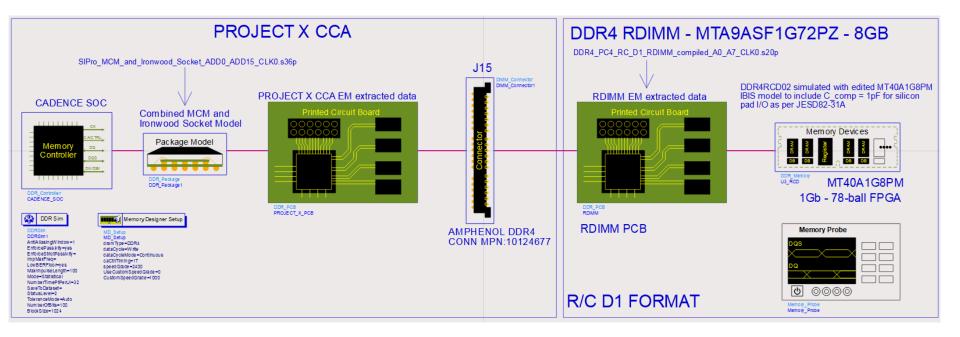




49


Results DDR4-2400 ADD[7:0] at SDRAM (U5) on UDIMM – FAST IBIS Corner

Results DDR4-2400 ADD[7:0] at SDRAM (U8) on UDIMM – FAST IBIS Corner



DDR4-2400 Write ADD[7:0] + CLK0 Results with RDIMM (R/C D1)

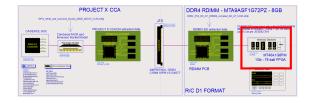
Simulation Model – DDR4-2400 Write – ADD[7:0] + CLK0 with RDIMM

System Models - IBIS Models - RDIMM RCD

MICRON SDRAM MPN: MT40A1G8

z91b.ibs * IBIS 4.2 Model 8Gb DDR4 SDRAM - Die Revision "A" This Model is valid for Commercial Temperature Range 0C<=Tc<=95C

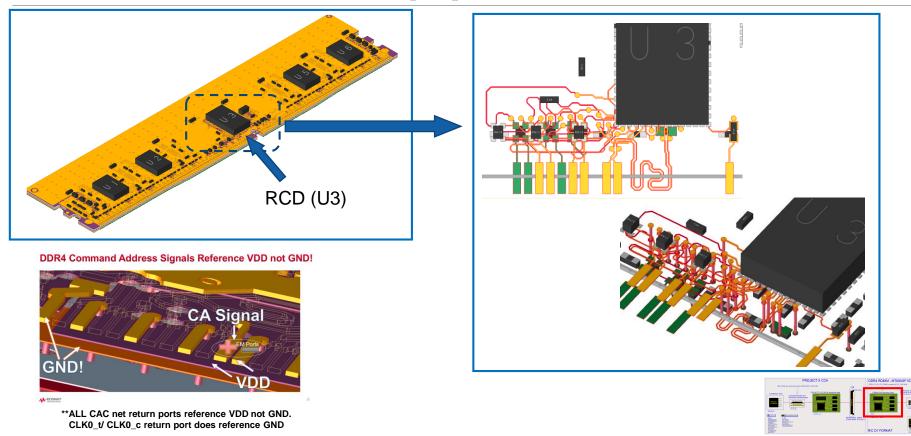
Valid for DDR4-1600/1866/2133/2400/2666 operation Models *_2666 are applicable for speed grade 2666 Mbps (-075) and below


Part Number VDD/VDDQ Architecture Package

78-Ball FBGA MT40A2G4PM $12V/12V/2Gh \times 4$ MT40A1G8PM 1.2V/1.2V 1Gb x 8 78-Ball FBGA MT40A512M16HA 1.2V/1.2V 96-Ball FBGA 512Mb x 16 MT40A2G4Z91B 1.2V/1.2V 2Gb x 4 Bare Die 1.2V/1.2V 1Gb x 8 MT40A1G8Z91B Bare Die MT40A512M16Z91B 1.2V/1.2V 512Mb x 16 Bare Die [IBIS Ver] 4.2 [File Name] z91b.ibs 09/22/2014 [Date] [File Rev] 1.0 From silicon level SPICE model at Micron Technology, Inc. [Source]

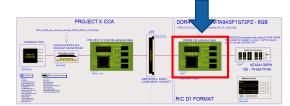
For support e-mail modelsupport@micron.com

MICRON SDRAM ibis model (z91b.ibs) was edited by setting the C_comp = 1pF as per the min, typ, & max allowed input/output pad capacitance for CAC and CLK pins, this is defined in the JEDEC JESD82-31A standard, Table 139


Model used for simulation


RDIMM EM Extracted Model – ADD[7:0] + CLK0

EM Extraction based on UDIMM Layout Data: PC4-RDIMM_RC_D1_R100_V200_20160408.zip


RDIMM EM Extracted Model – ADD[7:0] + CLK0

*All CAC nets shown include ideal 22Ω series resistors model to RCD *CLK0 include ideal 120Ω termination added in this model to RCD

EM Extraction based on UDIMM Layout Data: PC4-RDIMM_RC_D1_R100_V200_20160408.zip

DDR4_PC4_RC_D1_RDIMM_compiled_A0_A7_CLK0.s20p

RDIMM Receiver Eye Mask at Registered Clock Driver (RCD)

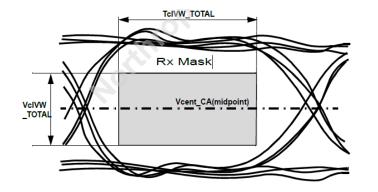


Figure 39 - CA Receiver(Rx) mask

DDR4RCD02 input receiver to successfully capture a valid input signal with BER < 1e-18

*Table 109 is from JEDEC JESD82-31A

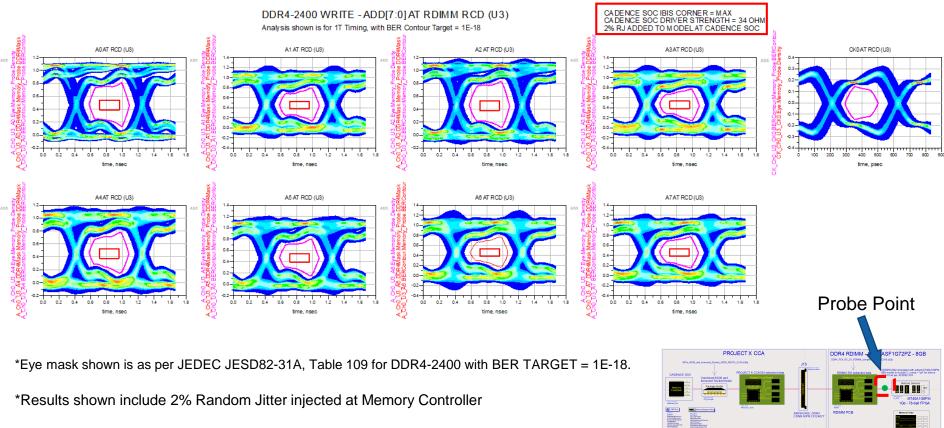
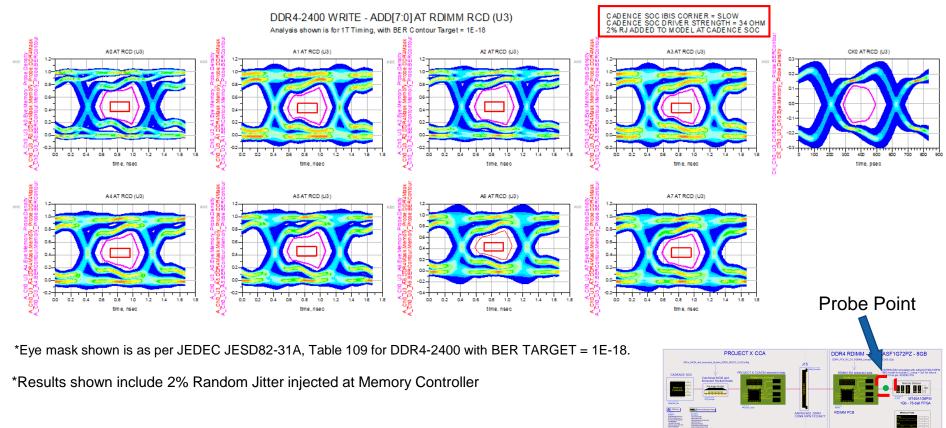

Speed		DDR4-1600/ 1866/2133 DDR4-2400		-2400	DDR4-2666		DDR4-2933		DDR4-3200		Unit	NOTE	
Symbol	Parameter	Min	Мах	Min	Мах	Min	Мах	Min	Max	Min	Max		
VcIVW_TOTAL	Rx Mask p-p voltage total	-	150	-	120	-	120	-	110	-	100	mV	1,2,3,
TcIVW_TOTAL	Rx timing window total	-	0.2	-	0.15	-	0.15	-	0.135	-	0.135	UI	1,4
VIHL_AC	CAAC input pulse amplitude pk-pk	180	-	150	-	140	-	130	-	120	-	mV	5
TcIPW	CA input pulse width	0.5	-	0.4	-	0.3	-	0.3	-	0.3	-	UI	6
tCK2CA	CK to CA offset	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	UI	7
tCACA	CA to CA offset	-	0.04	-	0.04	-	0.04	-	0.04	-	0.04	UI	8
SRIN_cIVW	Input Slew Rate over VcIVW_TOTAL	1	5	1	5	1	5	1	5	1	5	V/ns	9
mask is applied p NOTE 2: Rx mas Vcent_CA(midpo NOTE 3: The Vcl NOTE 4: Overshi NOTE 5: CA inpu any UI during wh Vcent_CA(midpo	mask voltage and timi ver bit and includes vo k voltage AC swing p int) and at least half o VW voltage levels arr oot and Undershoot S to pulse signal swing i ich there is a signal tr int), which is defined	oltage ar eak-pea of VcIVW e center of center of the ro ansition. in Figure	nd temper k require /_TOTAL ed aroun tions see eceiver n No timir e 40.	erature d ement ov L(max) b d Vcent e Table nust me ng requi	Irift term ver TcIV below Vo _CA(mid 117 and et or exc rement a	s. The d W_TOT/ cent_CA dpoint). Figure 5 ceed VIH above lev	esign sp AL with a (midpoin 50. L_AC fo	ecification at least f nt). or at leas	on is BEI half of Vo t one poi	R ≤1e-1 NVW_TO	8. OTAL(ma the dura	ax) abov tion of T	re TcIPW fo
NOTE 7: CK to C and temperature NOTE 8: CA to C for a given comp	imum input pulse wid A offset defined withir variation. A offset is defined as onent. Includes all DD ew rate over VcIVW N	the mag	D/CMD a gnitude o 02 volta	nd CTR	L inputs ference emperat	at DDR betweer ture varia	n the min ation.	n and ma	ax CK to	CA offse	et at DD	R4RCD	02 balls

Table 109 — CA Input Receiver Voltage Margin and AC Timing by Speed Bin for DDR4-1600 -3200

R/C D1 FORMAT


DDR4-2400 Write Results – A[7:0] + CLK0 on RDIMM – MAX IBIS Corner

R/C D1 FORMAT

DDR4-2400 Write Results – A[7:0] + CLK0 on RDIMM – SLOW IBIS Corner

NORTHROP GRUMMAN