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Overview
• Why do we care about Gm tolerance of the error amp inside VRMs?

• Background on transconductance amplifiers

• Basics of feedback loops and control theory

• Case study – Gain sensitivity and nonlinear distortion

• Case study – VRM output impedance and stability

• Summary & conclusion
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ADP2389 Datasheet Gm nominal = 500 uS

Let’s talk about how to improve your design WITHOUT ADDING COST

Why do we care about the Gm tolerance of the Error Amp inside of VRMs? 
Transient Response Shunt vs. Series Compensation
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Series compensation 
mitigates the effects 
due to Gm tolerance

ADP2389 Datasheet Gm min = 450 uS

Per ADP2389 
Datasheet



The Voltage Regulator Module (VRM)

• What is the buck regulator VRM 
composed of?
• Logic Drivers

• Switches

• PWM Comparators with Slope 
Compensation

• Error Amplifier

• Loop gain T(s) is part of the 
VRM’s closed-loop transfer 
function

• The Error Amplifier feedback loop 
and transconductance affect the 
VRM’s output impedance
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T(s)

𝐻1(𝑠)
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Background on Transconductance Amplifiers

• A voltage-to-current converter, also called a Transconductance amplifier
• Accepts input voltage VI and yields an output current of the type io = gmVin 

• Current mirror

• Transconductance amplifiers are also known as Error Amplifiers (EA) in the VRM

•  These amplifiers have wide bandwidths and are inexpensive feedback amplifiers in 
a VRM

• This is, perhaps, the most common type of feedback amplifier in use today
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VRM Error Amp with Shunt vs. Series Compensation
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Error amplifier with shunt 
compensation

Error amplifier with series 
compensation



Negative Feedback Amplifier Basics
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𝑉𝑓𝑏 = 𝛽𝑉𝑜

α∑

VE

Vfb

Source
Vin

β

Load

⁻
+

Vo

T = 𝛼𝛽

A=
𝑉𝑜

𝑉𝑖𝑛
=

𝛼

1+𝛼𝛽

A feedback network which samples the Vo and produces a feedback signal is defined by:

𝑉𝑓𝑏 = 𝛽𝑉𝑜

Where the difference between the summing network is:

𝑉𝐸 = 𝑉𝑖𝑛 − 𝑉𝑓𝑏 = 𝑉𝑖𝑛 −𝛽𝑉𝑜

Closed-loop Gain

Eliminating Vfb and VE and solving the equation for A = Vo/Vin yields: 

Where our Loop Gain (T) or return ratio is defined by:

Where our desensitivity factor is defined by:

= 1 + 𝛼𝛽

Noise gain = 
𝟏

𝜷

𝑉𝑜 = 𝛼𝑉𝐸

An error amplifier accepts the signal VE and yields the output signal

Referenced from “Design with 
Operational Amplifiers and Analog 

Integrated Circuits by Sergio Franco”

Transconductance = 𝜶



Gain Desensitivity with Feedback
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α∑

VE

Vfb

Source
Vin

β

Load

⁻
+

Vo

𝜕𝐴

𝐴
=

1

1 + 𝑇
∙

𝜕𝛼

𝛼

It becomes apparent that negative feedback desensitizes 
gain!

Differentiating the closed-loop gain equation 
𝜕𝐴

𝜕𝛼
  yields: 

𝜕𝐴

𝜕𝛼
 =

1

(1 + 𝛼𝛽)2

Since 1 + 𝛼𝛽 = 𝐴/𝛼, we can rewrite and rearrange the above equation to be:

Replacing differential with finite increments and multiplying both sides 
by 100, we can approximate:

100
∆𝐴

𝐴
≅

1

1 + 𝑇
∙ (100

∆𝛼

𝛼
)

For T sufficiently large, even a substantial change in α will cause an insignificant change in A
Referenced from “Design with 

Operational Amplifiers and Analog 
Integrated Circuits by Sergio Franco”



Gain Insensitivity with Series Feedback
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𝐴𝑣𝑠ℎ𝑢𝑛𝑡 =
𝑅2 ∙ 𝐺𝑚 ∙ 𝑅𝑠ℎ𝑢𝑛𝑡

𝑅1 + 𝑅2

𝜕𝐴𝑣𝑠ℎ𝑢𝑛𝑡

𝜕𝐺𝑚
=

𝑅2 ∙ 𝑅𝑠ℎ𝑢𝑛𝑡

𝑅1 + 𝑅2

𝐴𝑣𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑅2 ∙ (𝐺𝑚 ∙ 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 − 1)

𝑅1 + 𝑅2 + 𝐺𝑚∙ 𝑅1 ∙ 𝑅2

𝜕𝐴𝑣𝑠𝑒𝑟𝑖𝑒𝑠

𝜕𝐺𝑚
=

𝑅2 ∙ 𝑅𝑠𝑒𝑟𝑖𝑒𝑠

𝑅1 + 𝑅2 + 𝐺𝑚∙ 𝑅1 ∙ 𝑅2
−

𝑅1 ∙ 𝑅2
2 ∙ (𝐺𝑚 ∙ 𝑅2−1)

(𝑅1+𝑅2 + 𝐺𝑚∙ 𝑅1 ∙ 𝑅2)2

Referenced example from 
“Power Integrity Using ADS”
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Case Study
Gain Sensitivity & Non-linear Distortion Reduction 
Shunt vs. Series Feedback Compensation

Note:
*Radiation-tolerant, designed for Space applications
**Internal compensation is set based on specific pin configuration. This EVAL used external compensation for this case study

VRM MPN MFG VRM Type Compensation

CASE 1 ADP2389 Analog Devices Current Mode External

CASE 2 ISL8026 Renesas/Intersil Current Mode External or Internal**

CASE 3 LM20143 Texas Instruments Current Mode External

CASE 4 TPS7H4003* Texas Instruments Current Mode External

CASE 5 MAX20098 Maxim Current Mode External



CASE 1 - ADP2389 Error Amplifier
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Per ADP2389 
Datasheet

Avshunt = 1.67
Avseries = 1.67



CASE 1 - ADP2389 Error Amplifier Vcomp 
Output
Gain Sensitivity & Linear Distortion – Shunt vs. Series Feedback
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Series feedback is less sensitive to gain variation and exhibits less linear distortion

This validates there is significantly greater sensitivity with shunt feedback



CASE 2 - ISL8026 Error Amplifier
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Per ISL8026 
Datasheet

Assume +/=50% variation
Min = 60 uA/V, Max = 180 uA/V

Avshunt = 4
Avseries = 4

Many VRM datasheets 
do not include the Gm 

tolerances

Gm tolerance is a HUGE 
performance factor



CASE 2 - ISL8026 Error Amplifier Vcomp Output
Gain Sensitivity & Linear Distortion – Shunt vs. Series Feedback
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Series feedback is less sensitive to gain variation and exhibits less linear distortion

This validates there is significantly greater sensitivity with shunt feedback



CASE 3 - LM20143 Error Amplifier
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Per LM20143 
Datasheet

Avshunt = 3.38
Avseries = 3.38

Referenced example from 
“Power Integrity Using ADS”



CASE 3 - LM20143 Error Amplifier Vcomp Output
Gain Sensitivity & Linear Distortion – Shunt vs. Series Feedback
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Series feedback is less sensitive to gain variation and exhibits less linear distortion

This validates there is significantly greater sensitivity with shunt feedback



CASE 4 - TPS7H4003 Error Amplifier
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Per TPS7H4003 
Datasheet

Avshunt = 11.5
Avseries = 11.5



CASE 4 - TPS7H4003 Error Amplifier Vcomp Output
Gain Sensitivity & Linear Distortion – Shunt vs. Series Feedback
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This validates there is significantly greater sensitivity with shunt feedback

Series feedback is less sensitive to gain variation and exhibits less linear distortion



CASE 5 - MAX20098 Error Amplifier
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Per MAX20098 
Datasheet

Avshunt = 4
Avseries = 4

-44% variation from nominal +50% variation from nominal



CASE 5 - MAX20098 Error Amplifier Vcomp Output
Gain Sensitivity & Linear Distortion – Shunt vs. Series Feedback
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Series feedback is less sensitive to gain variation and exhibits less linear distortion

This validates there is significantly greater sensitivity with shunt feedback
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Case Study using the Sandler State-Space Average Model
VRM Output Impedance and Stability Analysis
Shunt vs. Series Feedback Compensation

Notes:
*Radiation-tolerant, designed for Space applications
**Internal compensation is set based on specific pin configuration. This EVAL used external compensation for this case study

VRM MPN MFG VRM Type Compensation

CASE 1 ADP2389 Analog Devices Current Mode External

CASE 2 ISL8026 Renesas/Intersil Current Mode External or Internal**

CASE 3 LM20143 Texas Instruments Current Mode External

CASE 4 TPS7H4003* Texas Instruments Current Mode External

CASE 5 MAX20098 Maxim Current Mode External



Series compensation allows VRM output Z to be flat -> Better Transient Response

CASE 1 - ADP2389 Output Impedance & Step Load Response
Shunt vs. Series Compensation
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Rseries = 2.3MΩ

18mΩ @ 50kHz

1mΩ @ 50kHz

Flat Z means 88.6% 
improvement in 

transient response



CASE 1 - ADP2389 Stability Analysis with NISM
Shunt vs. Series Compensation
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Rseries = 2.3MΩ

Flat Z means 99.5% 
reduction of Q

*Non-Invasive Stability Measurement (NISM)



Series compensation allows VRM output Z to be flat -> Better Transient Response

CASE 2 - ISL8026 Output Impedance & Step Load Response
Shunt vs. Series
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Rseries = 4MΩ

61mΩ @ 159kHz

8mΩ @ 159kHz

Flat Z means 77% 
improvement in 

transient response



CASE 2 - ISL8026 Stability Analysis with NISM
Shunt vs. Series
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Rseries = 4MΩ

Flat Z means 97% 
reduction of Q

*Non-Invasive Stability Measurement (NISM)



CASE 3 - LM20143 Output Impedance & Stability with NISM
Shunt vs. Series Compensation
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Rseries = 48.7kΩ

Flat Z means 96.7% 
reduction of Q

*Non-Invasive Stability Measurement (NISM)

Series compensation allows VRM output Z to be flat -> Better Transient Response
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CASE 4 – TPS7H4003 Output Impedance
Shunt vs. Series Compensation

Rseries = 70kΩ

Series compensation allows VRM output Z to be flat -> Better Transient Response



CASE 5 - MAX20098 Output Impedance & Stability with NISM
Shunt vs. Series Compensation
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Rseries = 650 kΩ

Series compensation allows VRM output Z to be flat -> Better Transient Response



Call to Action

• VRM manufacturers need to provide designers the flexibility to choose 
between a shunt or series compensation

• Select Current Mode VRMs with the following:
• Access to Vcomp

• No internal compensation or at least the ability to disable the internal compensation

• Perfect regulation is a terrible thing……
• Because that means zero ohms.

• Flat VRM output impedance means better dynamic current response!
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Summary and Conclusions
• Series Compensation with a VRM design allows:

• Better stability

• Better transient response

• Flatter VRM design 

• Reduced gain sensitivity

• Ability to design the VRM to match the impedance of the load

• Flatter VRM output impedance means better power delivery to your PDN
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“Power Integrity Using ADS” 
by S. Sandler

“Power Distribution Network Design 
Methodologies” by I. Novak

“Power Integrity Measuring, Optimizing, and 
Troubleshooting Power Related Parameters in Electronics 

Systems” by S. Sandler



Thank You for Attending
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Feel Free to connect with us on LinkedIn

Join the Power Integrity for Distributed Systems LinkedIn Group
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CASE 1 - ADP2389 EVAL - ADI Design
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Shunt Compensation



CASE 1 - ADP2389 EVAL - Flat Z Design
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Series Compensation



CASE 2 - ISL8026 EVAL – Flat Z Design
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Series Compensation



CASE 2 - ISL8026 EVAL – Intersil Design
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Shunt Compensation



CASE 3 - LM20143 – Picotest Design
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Series Compensation



CASE 3 - LM20143 – TI Design
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Shunt Compensation



CASE 4 - TPS7H4003 EVAL – TI Design
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Shunt Compensation



CASE 4 - TPS7H4003 EVAL – Flat Z Design
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Series Compensation



CASE 5 - MAX20098 – Flat Z Design
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Series Compensation



CASE 5 - MAX20098 – MAXIM Design
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Shunt Compensation



END OF SLIDES
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